Toric complexes and Artin kernels

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toric Complexes and Artin Kernels

A simplicial complex L on n vertices determines a subcomplex TL of the ntorus, with fundamental group the right-angled Artin groupGL. Given an epimorphism χ : GL → Z, let T L be the corresponding cover, with fundamental group the Artin kernel Nχ. We compute the cohomology jumping loci of the toric complex TL, as well as the homology groups of T L with coefficients in a field k, viewed as module...

متن کامل

Kernels and Toric Kähler Varieties

We show that the classical Bernstein polynomials BN (f)(x) on the interval [0, 1] (and their higher dimensional generalizations on the simplex Σm ⊂ R) may be expressed in terms of Bergman kernels for the Fubini-Study metric on CP: BN (f)(x) is obtained by applying the Toeplitz operator f(N−1Dθ) to the Fubini-Study Bergman kernels. The expression generalizes immediately to any toric Kähler varie...

متن کامل

Subdivisions of Toric Complexes

We introduce toric complexes as polyhedral complexes consisting of rational cones together with a set of integral generators for each cone, and we define their associated face rings. Abstract simplicial complexes and rational fans can be considered as toric complexes, and the face ring for toric complexes extends Stanley and Reisner’s face ring for abstract simplicial complexes [20] and Stanley...

متن کامل

Intersection complexes of fans and toric varieties

In [GM2], Goresky and MacPherson defined and constructed intersection complexes for topological pseudomanifolds. The complexes are defined in the derived category of sheaves of modules over a constant ring sheaf. Since analytic spaces are of this category, algebraic varieties defined over C have intersection complexes. The intersection complex of a given variety has a variation depending on a s...

متن کامل

Bernstein Polynomials, Bergman Kernels and Toric Kähler Varieties

We show that the classical Bernstein polynomials BN(f)(x) on the interval [0, 1] (and their higher dimensional generalizations on the simplex Σm ⊂ R) may be expressed in terms of Bergman kernels for the Fubini-Study metric on CP: BN(f)(x) is obtained by applying the Toeplitz operator f(N−1Dθ) to the Fubini-Study Bergman kernels. The expression generalizes immediately to any toric Kähler variety...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2009

ISSN: 0001-8708

DOI: 10.1016/j.aim.2008.09.008